
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
s must be planned before they are written
B Algorithm \qquad

B Pseudocode
B Plan the logic of a computer program
\qquad
Commonly used tools for program planning and \qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sample Algorithm (Example 1)

There are 50 students in a class who appeared in their final examination. Their mark sheets have been given to you.

The division column of the mark sheet contains the division (FIRST, SECOND, THIRD or FAIL) obtained by the student

Write an algorithm to calculate and print the total number \qquad of students who passed in FIRST division.

Sample Algoritimu (Bxample 1)

Step 1: Initialize Total_First_Division and
Total_Marksheets_Checked to zero. (contd..)

Sample Algondinn (Example 2)

There are 100 employees in an organization. The organization wants to distribute annual bonus to the employees based on their performance. The performance of the employees is recorded in their annual appraisal forms. Every employee's appraisal form contains his/her basic salary and the grade for his/her performance during the year. The grade is of three categories - 'A' for outstanding performance, 'B' for good performance, and 'C' for average performance.
It has been decided that the bonus of an employee will be 100% of the basic salary for outstanding performance, 70% of the basic salary for good performance, 40% of the basic salary for average performance, and zero for all other cases.
Write an algorithm to calculate and print the total bonus amount to be distributed by the organization.

Sample Algorithon ($\mathrm{Exan}_{\mathrm{s}} \mathrm{mple} 2$)
Step 1: Initialize Total_Bonus and Total_Employees_Checked to zero.
(contd...)
Step 2: Initialize Bonus and Basic_Salary to zero.
Step 3: Take the appraisal form of the next employee.
Step 4: Read the employee's Basic_Salary and Grade.
Step 5: If Grade $=$ A, then Bonus $=$ Basic_Salary. Go to Step 8 .
Step 6: If Grade $=\mathrm{B}$, then Bonus $=$ Basic_Salary $\times 0.7$. Go to Step 8 .
Step 7: If Grade $=\mathrm{C}$, then Bonus $=$ Basic_Salary $\times 0.4$.
Step 8: Add Bonus to Total_Bonus.
Step 9: Add 1 to Total_Employees_Checked.
Step 10: If Total_Employees_Checked < 100, then go to Step 2.
Step 11: Print Total_Bonus.
Step 12: Stop.
Ref Page $185 \quad$ Chapter 11: Planning the Computer Prooram
B As programs
B As flowcharts
B As pseudocodes
When an algorithm is represented in the form of a
programming language, it becomes a program
Thus, any program is an algorithm, although the
reverse is not true
Ref Page $185 \quad$ Chapter 11: Plannina the computer Proaram

\qquad

\qquad
\qquad
\qquad

(a) A two-way branch decision.
(b) A three-way branch decision

te $12 / 44$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Sanple fowchart (
A student appears in an examination, which consists of total 10 subjects, each subject having maximum marks of 100 .
The roll number of the student, his/her name, and the marks obtained by him/her in various subjects are supplied as input data.
Such a collection of related data items, which is treated as a unit is known as a record.
Draw a flowchart for the algorithm to calculate the percentage marks obtained by the student in this examination and then to print it along with his/her roll number and name.

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sコルple 引owchart（Exanple j）

For the examination of Example 3，we want to make a list of only those students who have passed（obtained 30% or more marks）in the examination．
In the end，we also want to print out the total number of students who have passed
Assuming that the input data of all the students is terminated by a trailer record，which has sentinel value of 9999999 for Rollno，draw a flowchart for the algorithm to do this．
\qquad
\qquad

\qquad
(1) Stat

$$
\text { (1) No } 15 \text { Sexcode = F? }
$$

Add marks of all subjeets giving Total
Percentage $=$ Total $/ 10$
(3)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fow charting Rules

B First chart the main line of logic, then incorporate detail
B Maintain a consistent level of detail for a given flowchart \qquad
B Do not chart every detail of the program. A reader who is interested in greater details can refer to the program itself
\qquad

B Words in the flowchart symbols should be common \qquad statements and easy to understand
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

B Better Communication		
B Proper program documentation		
B Efficient coding		
B Systematic debugging		
B Systematic testing		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ljndtations of flouchart

B Flowcharts are very time consuming and laborious to draw (especially for large complex programs) \qquad
B Redrawing a flowchart for incorporating changes/ modifications is a tedious task
is There are no standards determining the amount of detail
\qquad that should be included in a flowchart \qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Basjc Logic (Control) Sicsuctures

Any program logic can be expressed by using only following three simple logic structures: \qquad

1. Sequence logic,
2. Selection logic, and
3. Iteration (or looping) logic

Programs structured by using only these three logic
\qquad structures are called structured programs, and the \qquad technique of writing such programs is known as structured programming

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
CASE Type
Case Type 1: Process 1
Case Type 2: Process 2
Case Type n: Process n ENDCASE
(b) Pseudocode

Slide $37 / 44$
\qquad
\qquad

B Used to produce loops in program logic when one or more instructions may be executed several times depending on some conditions

B Two popularly used iteration logic structures are \qquad

1. DO...WHILE
2. REPEAT...UNTIL \qquad
\qquad
\qquad
Ref Page 201 Chapter 11: Planning the Computer Program Slide 38/44
\qquad

Jteration (or Looping) Logis (REPEAT..UNTIL SEructure)

(a) Flowchart

(b) Pseudocode
Chapter 11: Planning the Computer Proaram
Sample Pseudocode (for Exansple ず)
Set Count to zero
Set Count to zero
Read first student record
Read first student record
DO WHILE Sexcode is not equal to Z
DO WHILE Sexcode is not equal to Z
F Sexcode $=\mathrm{F}$ THEN
F Sexcode $=\mathrm{F}$ THEN
Calculate Percentage
Calculate Percentage
F Percentage $=>45$ THEN
F Percentage $=>45$ THEN
Percentage < 60 THEN
Percentage < 60 THEN
Write output data
Write output data
Add 1 to Count
Add 1 to Count
ENDIF
ENDIF
END
ENDIF
END
ENDIF
ENDIF
ENDIF
Read next student record
Read next student record
ENDDO
ENDDO
Write Count
Write Count
Stop
Stop

Advantages of Pseudocoder

B Converting a pseudocode to a programming language is much more easier than converting a flowchart to a programming language
B As compared to a flowchart, it is easier to modify the pseudocode of a program logic when program modifications are necessary
B Writing of pseudocode involves much less time and effort than drawing an equivalent flowchart as it has only a few rules to follow

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
Control structures
Flow
Looping logic
Micro flowchart
Macro flowchar
Program Design Language (PDL)
Sequence logic
Sentinel value
Structured programming
\qquad

Chapter 11: Planning the Computer Proaram \qquad

